Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 467
Filtrar
1.
J Am Heart Assoc ; 13(5): e032828, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38420846

RESUMO

BACKGROUND: Myosin phosphatase targeting subunit 2 (MYPT2) is an important subunit of cardiac MLC (myosin light chain) phosphatase, which plays a crucial role in regulating the phosphorylation of MLC to phospho-MLC (p-MLC). A recent study demonstrated mineralocorticoid receptor-related hypertension is associated with RhoA/Rho-associated kinase/MYPT1 signaling upregulation in smooth muscle cells. Our purpose is to investigate the effect of MYPT2 on cardiac function and fibrosis in mineralocorticoid receptor-related hypertension. METHODS AND RESULTS: HL-1 murine cardiomyocytes were incubated with different concentrations or durations of aldosterone. After 24-hour stimulation, aldosterone increased CTGF (connective tissue growth factor) and MYPT2 and decreased p-MLC in a dose-dependent manner. MYPT2 knockdown decreased CTGF. Cardiac-specific MYPT2-knockout (c-MYPT2-/-) mice exhibited decreased type 1 phosphatase catalytic subunit ß and increased p-MLC. A disease model of mouse was induced by subcutaneous aldosterone and 8% NaCl food for 4 weeks after uninephrectomy. Blood pressure elevation and left ventricular hypertrophy were observed in both c-MYPT2-/- and MYPT2+/+ mice, with no difference in heart weights or nuclear localization of mineralocorticoid receptor in cardiomyocytes. However, c-MYPT2-/- mice had higher ejection fraction and fractional shortening on echocardiography after aldosterone treatment. Histopathology revealed less fibrosis, reduced CTGF, and increased p-MLC in c-MYPT2-/- mice. Basal global radial strain and global longitudinal strain were higher in c-MYPT2-/- than in MYPT2+/+ mice. After aldosterone treatment, both global radial strain and global longitudinal strain remained higher in c-MYPT2-/- mice compared with MYPT2+/+ mice. CONCLUSIONS: Cardiac-specific MYPT2 knockout leads to decreased myosin light chain phosphatase and increased p-MLC. MYPT2 deletion prevented cardiac fibrosis and dysfunction in a model of mineralocorticoid receptor-associated hypertension.


Assuntos
Hipertensão , Receptores de Mineralocorticoides , Camundongos , Animais , Fosfatase de Miosina-de-Cadeia-Leve/genética , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Aldosterona/farmacologia , Aldosterona/metabolismo , Hipertensão/genética , Hipertensão/metabolismo , Miócitos Cardíacos/metabolismo , Fosforilação , Fibrose
2.
J Biol Chem ; 300(2): 105652, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38224947

RESUMO

The physiological importance of cardiac myosin regulatory light chain (RLC) phosphorylation by its dedicated cardiac myosin light chain kinase has been established in both humans and mice. Constitutive RLC-phosphorylation, regulated by the balanced activities of cardiac myosin light chain kinase and myosin light chain phosphatase (MLCP), is fundamental to the biochemical and physiological properties of myofilaments. However, limited information is available on cardiac MLCP. In this study, we hypothesized that the striated muscle-specific MLCP regulatory subunit, MYPT2, targets the phosphatase catalytic subunit to cardiac myosin, contributing to the maintenance of cardiac function in vivo through the regulation of RLC-phosphorylation. To test this hypothesis, we generated a floxed-PPP1R12B mouse model crossed with a cardiac-specific Mer-Cre-Mer to conditionally ablate MYPT2 in adult cardiomyocytes. Immunofluorescence microscopy using the gene-ablated tissue as a control confirmed the localization of MYPT2 to regions where it overlaps with a subset of RLC. Biochemical analysis revealed an increase in RLC-phosphorylation in vivo. The loss of MYPT2 demonstrated significant protection against pressure overload-induced hypertrophy, as evidenced by heart weight, qPCR of hypertrophy-associated genes, measurements of myocyte diameters, and expression of ß-MHC protein. Furthermore, mantATP chase assays revealed an increased ratio of myosin heads distributed to the interfilament space in MYPT2-ablated heart muscle fibers, confirming that RLC-phosphorylation regulated by MLCP, enhances cardiac performance in vivo. Our findings establish MYPT2 as the regulatory subunit of cardiac MLCP, distinct from the ubiquitously expressed canonical smooth muscle MLCP. Targeting MYPT2 to increase cardiac RLC-phosphorylation in vivo may improve baseline cardiac performance, thereby attenuating pathological hypertrophy.


Assuntos
Miócitos Cardíacos , Quinase de Cadeia Leve de Miosina , Animais , Humanos , Camundongos , Hipertrofia/metabolismo , Miócitos Cardíacos/metabolismo , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosforilação , Camundongos Endogâmicos C57BL
3.
Am J Physiol Heart Circ Physiol ; 326(3): H860-H869, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38276948

RESUMO

Targeting alternative exons for therapeutic gain has been achieved in a few instances and potentially could be applied more broadly. The myosin phosphatase (MP) enzyme is a critical hub upon which signals converge to regulate vessel tone. Alternative exon 24 of myosin phosphatase regulatory subunit (Mypt1 E24) is an ideal target as toggling between the two isoforms sets smooth muscle sensitivity to vasodilators such as nitric oxide (NO). This study aimed to develop a gene-based therapy to suppress splicing of Mypt1 E24 thereby switching MP enzyme to the NO-responsive isoform. CRISPR/Cas9 constructs were effective at editing of Mypt1 E24 in vitro; however, targeting of vascular smooth muscle in vivo with AAV9 was inefficient. In contrast, an octo-guanidine conjugated antisense oligonucleotide targeting the 5' splice site of Mypt1 E24 was highly efficient in vivo. It reduced the percent splicing inclusion of Mypt1 E24 from 80% to 10% in mesenteric arteries. The maximal and half-maximal effects occurred at 12.5 and 6.25 mg/kg, respectively. The effect persisted for at least 1 mo without toxicity. This highly effective splice-blocking antisense oligonucleotide could be developed as a novel therapy to reverse vascular dysfunction common to diseases such as hypertension and heart failure.NEW & NOTEWORTHY Alternative exon usage is a major driver of phenotypic diversity in all cell types including smooth muscle. However, the functional significance of most of the hundreds of thousands of alternative exons has not been defined, nor in most cases even tested. If their importance to vascular function were known these alternative exons could represent novel therapeutic targets. Here, we present injection of Vivo-morpholino splice-blocking antisense oligonucleotides as a simple, efficient, and cost-effective method for suppression of alternative exon usage in vascular smooth muscle in vivo.


Assuntos
Músculo Liso Vascular , Oligonucleotídeos Antissenso , Músculo Liso Vascular/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Fosfoproteínas Fosfatases/metabolismo , Éxons , Isoformas de Proteínas/metabolismo , Processamento Alternativo , Fosforilação
4.
Sci Rep ; 13(1): 19740, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957190

RESUMO

Yes-associated protein (YAP) is a transcriptional coactivator that is essential for the malignancy of various cancers. We have previously shown that YAP activity is positively regulated by phosphatidylserine (PS) in recycling endosomes (REs). However, the mechanism by which YAP is activated by PS in REs remains unknown. In the present study, we examined a group of protein phosphatases (11 phosphatases) that we had identified previously as PS-proximity protein candidates. Knockdown experiments of these phosphatases suggested that PPP1R12A, a regulatory subunit of the myosin phosphatase complex, was essential for YAP-dependent proliferation of triple-negative breast cancer MDA-MB-231 cells. Knockdown of PPP1R12A increased the level of phosphorylated YAP, reduced that of YAP in the nucleus, and suppressed the transcription of CTGF (a YAP-regulated gene), reinforcing the role of PPP1R12A in YAP activation. ATP8A1 is a PS-flippase that concentrates PS in the cytosolic leaflet of the RE membrane and positively regulates YAP signalling. In subcellular fractionation experiments using cell lysates, PPP1R12A in control cells was recovered exclusively in the microsomal fraction. In contrast, a fraction of PPP1R12A in ATP8A1-depleted cells was recovered in the cytosolic fraction. Cohort data available from the Cancer Genome Atlas showed that high expression of PPP1R12A, PP1B encoding the catalytic subunit of the myosin phosphatase complex, or ATP8A1 correlated with poor prognosis in breast cancer patients. These results suggest that the "ATP8A1-PS-YAP phosphatase" axis in REs facilitates YAP activation and thus cell proliferation.


Assuntos
Monoéster Fosfórico Hidrolases , Transdução de Sinais , Humanos , Monoéster Fosfórico Hidrolases/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/genética , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Endossomos/metabolismo , Proliferação de Células , Adenosina Trifosfatases/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo
5.
Cell Chem Biol ; 30(12): 1666-1679.e6, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-37625414

RESUMO

An emerging strategy for the therapeutic targeting of protein phosphatases involves the use of compounds that interfere with the binding of regulatory subunits or substrates. However, high-throughput screening strategies for such interfering molecules are scarce. Here, we report on the conversion of the NanoBiT split-luciferase system into a robust assay for the quantification of phosphatase subunit and substrate interactions in cell lysates. The assay is suitable to screen small-molecule libraries for interfering compounds. We designed and validated split-luciferase sensors for a broad range of PP1 and PP2A holoenzymes, including sensors that selectively report on weak interaction sites. To facilitate efficient hit triaging in large-scale screening campaigns, deselection procedures were developed to eliminate assay-interfering molecules with high fidelity. As a proof-of-principle, we successfully applied the split-luciferase screening tool to identify small-molecule disruptors of the interaction between the C-terminus of PP1ß and the ankyrin-repeat domain of the myosin-phosphatase targeting subunit MYPT1.


Assuntos
Proteína Fosfatase 1 , Proteína Fosfatase 1/química , Proteína Fosfatase 1/metabolismo , Ligação Proteica , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosforilação
6.
Biochem Biophys Res Commun ; 676: 115-120, 2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37506472

RESUMO

Myosin phosphatase (MP) is an enzyme complex that regulates muscle contraction and plays important roles in various physiological and pathological conditions. Myosin phosphatase targeting subunit (MYPT) 2, a subunit of MP, interacts with protein phosphatase 1c to regulate its phosphatase activity. MYPT2 exists in various isoforms that differ in the composition of essential motifs that contribute to its function. However, regulatory mechanisms underlying these isoforms are poorly understood. Human leukocyte antigen-F adjacent transcript 10 (FAT10) is a ubiquitin-like modifier that not only targets proteins for proteasomal degradation but also stabilizes its interacting proteins. In this study, we investigated the effect of the interaction between FAT10 and MYPT2 isoform a (the canonical full-length form of MYPT2) or MYPT2 isoform f (the natural truncated form of MYPT2). FAT10 interacted with both MYPT2 isoforms a and f; however, only MYPT2 isoform f was increased by FAT10, whereas MYPT2 isoform a remained unaffected by FAT10. We further confirmed that, in contrast to MYPT2 isoform a, MYPT2 isoform f undergoes rapid degradation via the ubiquitin-proteasome pathway and that FAT10 stabilizes MYPT2 isoform f by inhibiting its ubiquitination. Therefore, our findings suggest that the interaction between FAT10 and MYPT2 isoforms leads to distinct stabilization effects on each isoform, potentially modulating MP activity.


Assuntos
Ubiquitina , Ubiquitinas , Humanos , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Isoformas de Proteínas/metabolismo , Proteína Fosfatase 1/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , Ubiquitinas/metabolismo
7.
J Hypertens ; 41(7): 1201-1214, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37115907

RESUMO

OBJECTIVE: Small arteries from different organs vary with regard to the mechanisms that regulate vasoconstriction. This study investigated the impact of advanced age on the regulation of vasoconstriction in isolated human small arteries from kidney cortex and periintestinal mesenteric tissue. METHODS: Renal and mesenteric tissues were obtained from patients (mean age 71 ±â€Š9 years) undergoing elective surgery. Furthermore, intrarenal and mesenteric arteries from young and aged mice were studied. Arteries were investigated by small vessel myography and western blot. RESULTS: Human intrarenal arteries (h-RA) showed higher stretch-induced tone and higher reactivity to α 1 adrenergic receptor stimulation than human mesenteric arteries (h-MA). Rho-kinase (ROK) inhibition resulted in a greater decrease in Ca 2+ and depolarization-induced tone in h-RA than in h-MA. Basal and α 1 adrenergic receptor stimulation-induced phosphorylation of the regulatory light chain of myosin (MLC 20 ) was higher in h-RA than in h-MA. This was associated with higher ROK-dependent phosphorylation of the regulatory subunit of myosin light-chain-phosphatase (MLCP), MYPT1-T853. In h-RA phosphorylation of ribosomal S6-kinase II (RSK2-S227) was significantly higher than in h-MA. Stretch-induced tone and RSK2 phosphorylation was also higher in interlobar arteries (m-IAs) from aged mice than in respective vessels from young mice and in murine mesenteric arteries (m-MA) from both age groups. CONCLUSION: Vasoconstriction in human intrarenal arteries shows a greater ROK-dependence than in mesenteric arteries. Activation of RSK2 may contribute to intrarenal artery tone dysregulation associated with aging. Compared with h-RA, h-MA undergo age-related remodeling leading to a reduction of the contractile response to α 1 adrenergic stimulation.


Assuntos
Receptores Adrenérgicos alfa 1 , Quinases Associadas a rho , Humanos , Camundongos , Animais , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Quinases Associadas a rho/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Artérias Mesentéricas/metabolismo , Transdução de Sinais , Vasoconstrição , Miosinas/metabolismo , Fosforilação , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo
8.
J Biol Chem ; 299(4): 104584, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36889588

RESUMO

Cardiac contraction is modulated by the phosphorylation state of myosin regulatory light chain 2 (MLC-2v). The level of MLC-2v phosphorylation is dependent on the opposing activities of MLC kinases and phosphatases. The predominant MLC phosphatase found in cardiac myocytes contains Myosin Phosphatase Targeting Subunit 2 (MYPT2). Overexpression of MYPT2 in cardiac myocytes results in a decreased level of MLC phosphorylation, reduced left ventricular contraction, and induction of hypertrophy; however, the effect of knocking out MYPT2 on cardiac function is unknown. We obtained heterozygous mice containing a MYPT2 null allele from the Mutant Mouse Resource Center. These mice were produced in a C57BL/6N background which lack MLCK3, the main regulatory light chain kinase in cardiac myocytes. We found that mice null for MYPT2 were viable and had no obvious phenotypic abnormality when compared to WT mice. Additionally, we determined that WT C57BL/6N mice had a low basal level of MLC-2v phosphorylation, which was significantly increased when MYPT2 was absent. At 12-weeks, MYPT2 KO mice had smaller hearts and showed downregulation of genes involved in cardiac remodeling. Using cardiac echo, we found that 24-week-old male MYPT2 KO mice had decreased heart size with increased fractional shortening compared to their MYPT2 WT littermates. Collectively, these studies highlight the important role that MYPT2 plays in cardiac function in vivo and demonstrate that its deletion can partially compensate for the lack of MLCK3.


Assuntos
Cardiopatias , Quinase de Cadeia Leve de Miosina , Camundongos , Masculino , Animais , Fosfatase de Miosina-de-Cadeia-Leve/genética , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Camundongos Endogâmicos C57BL , Fosfoproteínas Fosfatases/metabolismo , Miócitos Cardíacos/metabolismo , Fosforilação , Cadeias Leves de Miosina/genética , Cadeias Leves de Miosina/metabolismo
9.
Biomolecules ; 13(3)2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36979361

RESUMO

The specific post-translational modifications of the C-terminal domain (CTD) of the Rpb1 subunit of RNA polymerase II (RNAPII) correlate with different stages of transcription. The phosphorylation of the Ser5 residues of this domain associates with the initiation condensates, which are formed through liquid-liquid phase separation (LLPS). The subsequent Tyr1 phosphorylation of the CTD peaks at the promoter-proximal region and is involved in the pause-release of RNAPII. By implementing super-resolution microscopy techniques, we previously reported that the nuclear Phosphatidylinositol 4,5-bisphosphate (PIP2) associates with the Ser5-phosphorylated-RNAPII complex and facilitates the RNAPII transcription. In this study, we identified Myosin Phosphatase Rho-Interacting Protein (MPRIP) as a novel regulator of the RNAPII transcription that recruits Tyr1-phosphorylated CTD (Tyr1P-CTD) to nuclear PIP2-containing structures. The depletion of MPRIP increases the number of the initiation condensates, indicating a defect in the transcription. We hypothesize that MPRIP regulates the condensation and transcription through affecting the association of the RNAPII complex with nuclear PIP2-rich structures. The identification of Tyr1P-CTD as an interactor of PIP2 and MPRIP further points to a regulatory role in RNAPII pause-release, where the susceptibility of the transcriptional complex to leave the initiation condensate depends on its association with nuclear PIP2-rich structures. Moreover, the N-terminal domain of MPRIP, which is responsible for the interaction with the Tyr1P-CTD, contains an F-actin binding region that offers an explanation of how nuclear F-actin formations can affect the RNAPII transcription and condensation. Overall, our findings shed light on the role of PIP2 in RNAPII transcription through identifying the F-actin binding protein MPRIP as a transcription regulator and a determinant of the condensation of RNAPII.


Assuntos
Actinas , RNA Polimerase II , Actinas/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/genética , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosfoproteínas Fosfatases/genética , Fosforilação , RNA Polimerase II/química , Transcrição Gênica , Humanos
10.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902219

RESUMO

Identification of specific protein phosphatase-1 (PP1) inhibitors is of special importance regarding the study of its cellular functions and may have therapeutic values in diseases coupled to signaling processes. In this study, we prove that a phosphorylated peptide of the inhibitory region of myosin phosphatase (MP) target subunit (MYPT1), R690QSRRS(pT696)QGVTL701 (P-Thr696-MYPT1690-701), interacts with and inhibits the PP1 catalytic subunit (PP1c, IC50 = 3.84 µM) and the MP holoenzyme (Flag-MYPT1-PP1c, IC50 = 3.84 µM). Saturation transfer difference NMR measurements established binding of hydrophobic and basic regions of P-Thr696-MYPT1690-701 to PP1c, suggesting interactions with the hydrophobic and acidic substrate binding grooves. P-Thr696-MYPT1690-701 was dephosphorylated by PP1c slowly (t1/2 = 81.6-87.9 min), which was further impeded (t1/2 = 103 min) in the presence of the phosphorylated 20 kDa myosin light chain (P-MLC20). In contrast, P-Thr696-MYPT1690-701 (10-500 µM) slowed down the dephosphorylation of P-MLC20 (t1/2 = 1.69 min) significantly (t1/2 = 2.49-10.06 min). These data are compatible with an unfair competition mechanism between the inhibitory phosphopeptide and the phosphosubstrate. Docking simulations of the PP1c-P-MYPT1690-701 complexes with phosphothreonine (PP1c-P-Thr696-MYPT1690-701) or phosphoserine (PP1c-P-Ser696-MYPT1690-701) suggested their distinct poses on the surface of PP1c. In addition, the arrangements and distances of the surrounding coordinating residues of PP1c around the phosphothreonine or phosphoserine at the active site were distinct, which may account for their different hydrolysis rate. It is presumed that P-Thr696-MYPT1690-701 binds tightly at the active center but the phosphoester hydrolysis is less preferable compared to P-Ser696-MYPT1690-701 or phosphoserine substrates. Moreover, the inhibitory phosphopeptide may serve as a template to synthesize cell permeable PP1-specific peptide inhibitors.


Assuntos
Inibidores Enzimáticos , Fosfopeptídeos , Proteína Fosfatase 1 , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosfopeptídeos/química , Fosfopeptídeos/farmacologia , Fosforilação , Fosfosserina/metabolismo , Fosfotreonina/metabolismo , Proteína Fosfatase 1/antagonistas & inibidores , Proteína Fosfatase 1/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia
11.
J Biol Chem ; 299(2): 102893, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36634848

RESUMO

The subcellular localization, activity , and substrate specificity of the serine/threonine protein phosphatase 1 catalytic subunit (PP1cat) is mediated through its dynamic association with regulatory subunits in holoenzyme complexes. While some functional overlap is observed for the three human PP1cat isoforms, they also show distinct targeting based on relative preferences for specific regulatory subunits. A well-known example is the preferential association of MYPT1 with PP1ß in the myosin phosphatase complex. In smooth muscle, MYPT1/PP1ß counteracts the muscle contraction induced by phosphorylation of the light chains of myosin by the myosin light chain kinase. This phosphatase complex is also found in nonmuscle cells, where it is targeted to both myosin and nonmyosin substrates and contributes to regulation of the balance of cytoskeletal structure and motility during cell migration and division. Although it remains unclear how MYPT1/PP1ß traffics between microtubule- and actin-associated substrates, our identification of the microtubule- and actin-binding protein SPECC1L in both the PP1ß and MYPT1 interactomes suggests that it is the missing link. Our validation of their association using coimmunoprecipitation and proximity biotinylation assays, together with the strong overlap that we observed for the SPECC1L and MYPT1 interactomes, confirmed that they exist in a stable complex in the cell. We further showed that SPECC1L binds MYPT1 directly and that it can impact the balance of the distribution of the MYPT1/PP1ß complex between the microtubule and filamentous actin networks.


Assuntos
Microtúbulos , Fosfatase de Miosina-de-Cadeia-Leve , Proteína Fosfatase 1 , Humanos , Actinas/metabolismo , Microtúbulos/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosforilação , Proteína Fosfatase 1/metabolismo , Ligação Proteica
12.
Cells ; 11(19)2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36230968

RESUMO

Intraocular pressure (IOP) is regulated primarily through aqueous humor production by ciliary body and drainage through uveoscleral and trabecular meshwork (TM) tissues. The goal of this study was to measure the effect of non-psychotropic cannabidiol (CBD) on aqueous humor outflow through TM and assess the effect of CBD on the TM cell signaling pathways that are important for regulating outflow. Perfused porcine eye anterior segment explants were used to investigate the effects of CBD on aqueous humor outflow. Cultured porcine TM cells were used to study the effects of CBD on TM cell contractility, myosin light chain (MLC) and myosin phosphatase targeting subunit 1 (MYPT1) phosphorylation, and RhoA activation. In the anterior segment perfusion experiments, aqueous humor outflow was increased significantly within 1 h after adding 1 µM CBD and the effect was sustained over the 5 h of measurement. Treatment of TM cells with 1 µM CBD significantly decreased TM cell-mediated collagen contraction, inhibited phosphorylation of MLC and MYPT1, and reduced RhoA activation. Our data demonstrate, for the first time, that as a potential therapeutic agent for lowering intraocular pressure, CBD can enhance aqueous humor outflow and modify TM cell signaling.


Assuntos
Canabidiol , Malha Trabecular , Animais , Humor Aquoso/metabolismo , Canabidiol/farmacologia , Cadeias Leves de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/farmacologia , Transdução de Sinais , Suínos , Malha Trabecular/metabolismo
13.
FEBS Open Bio ; 12(11): 2083-2095, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36106411

RESUMO

Myosin phosphatase target subunit 1 (MYPT1) is a subunit of myosin phosphatase that is capable of regulating smooth muscle contraction. MYPT1 has been reported to be involved in a wide variety of tumours, but its expression and biological functions in renal clear cell carcinoma (ccRCC) remain obscure. Herein, we analysed the relationship between patient clinicopathological characteristics and MYPT1 expression levels in ccRCC patients using a tissue microarray (TMA) and data retrieved from the TCGA-KIRC dataset. MYPT1 was overexpressed or depleted using siRNA in ccRCC cells to assess the effects on migration and invasion in vitro and in vivo. Additionally, RNA-sequencing and bioinformatics analysis were performed to investigate the precise mechanism. MYPT1 expression in ccRCC tissues was observed to be lower than that in nonmalignant tissues (P < 0.05). In addition, MYPT1 downregulation was closely linked to advanced pathological stage (P < 0.05), and poor OS (overall survival; P < 0.05). Functionally, increased expression of MYPT1 suppressed ccRCC migration and invasion in vitro, and inhibited tumour metastasis in vivo. In addition, MYPT1 overexpression exerted its suppressive effects via the MAPK8/N-cadherin pathway in ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Caderinas/genética , Carcinoma de Células Renais/metabolismo , Movimento Celular/genética , Neoplasias Renais/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/genética , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo
14.
Nat Commun ; 13(1): 5715, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175407

RESUMO

Protein kinase A promotes beige adipogenesis downstream from ß-adrenergic receptor signaling by phosphorylating proteins, including histone H3 lysine 9 (H3K9) demethylase JMJD1A. To ensure homeostasis, this process needs to be reversible however, this step is not well understood. We show that myosin phosphatase target subunit 1- protein phosphatase 1ß (MYPT1-PP1ß) phosphatase activity is inhibited via PKA-dependent phosphorylation, which increases phosphorylated JMJD1A and beige adipogenesis. Mechanistically, MYPT1-PP1ß depletion results in JMJD1A-mediated H3K9 demethylation and activation of the Ucp1 enhancer/promoter regions. Interestingly, MYPT1-PP1ß also dephosphorylates myosin light chain which regulates actomyosin tension-mediated activation of YAP/TAZ which directly stimulates Ucp1 gene expression. Pre-adipocyte specific Mypt1 deficiency increases cold tolerance with higher Ucp1 levels in subcutaneous white adipose tissues compared to control mice, confirming this regulatory mechanism in vivo. Thus, we have uncovered regulatory cross-talk involved in beige adipogenesis that coordinates epigenetic regulation with direct activation of the mechano-sensitive YAP/TAZ transcriptional co-activators.


Assuntos
Adipogenia , Cromatina , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Actomiosina , Adipogenia/genética , Animais , Proteínas Quinases Dependentes de AMP Cíclico , Epigênese Genética , Histonas , Lisina , Camundongos , Cadeias Leves de Miosina , Fosfatase de Miosina-de-Cadeia-Leve/genética , Monoéster Fosfórico Hidrolases
15.
Cells ; 11(15)2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35954160

RESUMO

The myosin light chain phosphatase target subunit 1 (MYPT1), encoded by the PPP1R12A gene, is a key component of the myosin light chain phosphatase (MLCP) protein complex. MYPT1 isoforms have been described as products of the cassette-type alternative splicing of exons E13, E14, E22, and E24. Through in silico analysis of the publicly available EST and mRNA databases, we established that PPP1R12A contains 32 exons (6 more than the 26 previously reported), of which 29 are used in 11 protein-coding transcripts. An in silico analysis of publicly available RNAseq data combined with validation by reverse transcription (RT)-PCR allowed us to determine the relative abundance of each transcript in three cell types of the circulatory system where MYPT1 plays important roles: human umbilical vein endothelial cells (HUVEC), human saphenous vein smooth muscle cells (HSVSMC), and platelets. All three cell types express up to 10 transcripts at variable frequencies. HUVECs and HSVSMCs predominantly express the full-length variant (58.3% and 64.3%, respectively) followed by the variant skipping E13 (33.7% and 23.1%, respectively), whereas in platelets the predominant variants are those skipping E14 (51.4%) and E13 (19.9%), followed by the full-length variant (14.4%). Variants including E24 account for 5.4% of transcripts in platelets but are rare (<1%) in HUVECs and HSVSMCs. Complex transcriptional profiles were also found across organs using in silico analysis of RNAseq data from the GTEx project. Our findings provide a platform for future studies investigating the specific (patho)physiological roles of understudied MYPT1 isoforms.


Assuntos
Sistema Cardiovascular , Fosfatase de Miosina-de-Cadeia-Leve/genética , Transcrição Reversa , Sistema Cardiovascular/metabolismo , Células Endoteliais/metabolismo , Humanos , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Reação em Cadeia da Polimerase , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
16.
J Gen Physiol ; 154(10)2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36001043

RESUMO

Smooth muscle (SM) is found in most hollow organs of the body. Phasic SM, as found in the gut, contracts to propel content, whereas tonic SM, as found in most blood vessels, maintains tension. This force maintenance is referred to as the latch state and occurs at low levels of myosin activation (myosin light chain [LC20] phosphorylation). Molecular mechanisms have been proposed to explain the latch state but have been studied only at the whole-muscle level because of technological limitations. In the current study, an assay chamber was devised to allow injection of myosin light chain phosphatase (MLCP) during laser trap and in vitro motility assays, without creating bulk flow, to reproduce latch state conditions at the molecular level. Using the laser trap in a single-beam mode, an actin filament was brought in contact with several myosin molecules on a pedestal. Myosin pulled on the actin filament until a plateau force was reached, at which point, MLCP was injected. Force maintenance was observed during LC20 dephosphorylation, the level of which was assessed in a parallel in vitro motility assay performed in the same conditions. Force was maintained longer for myosin purified from tonic SM than from phasic SM. These data support the longstanding dogma of strong bonds caused by dephosphorylated, noncycling cross-bridges. Furthermore, MLCP injection in an in vitro motility mixture assay performed with SM and skeletal muscle myosin suggests that the maintenance of these strong bonds is possible only if no energy is provided by surrounding actively cycling myosin molecules.


Assuntos
Músculo Liso , Miosinas de Músculo Liso , Contração Muscular , Músculo Liso/metabolismo , Cadeias Leves de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosforilação , Miosinas de Músculo Liso/metabolismo
17.
J Biol Chem ; 298(9): 102296, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35872014

RESUMO

Cardiac muscle myosin regulatory light chain (RLC) is constitutively phosphorylated at ∼0.4 mol phosphate/mol RLC in normal hearts, and phosphorylation is maintained by balanced activities of dedicated cardiac muscle-specific myosin light chain kinase and myosin light chain phosphatase (MLCP). Previously, the identity of the cardiac-MLCP was biochemically shown to be similar to the smooth muscle MLCP, which is a well-characterized trimeric protein comprising the regulatory subunit (MYPT1), catalytic subunit PP1cß, and accessory subunit M20. In smooth muscles in vivo, MYPT1 and PP1cß co-stabilize each other and are both necessary for normal smooth muscle contractions. In the cardiac muscle, MYPT1 and MYPT2 are both expressed, but contributions to physiological regulation of cardiac myosin dephosphorylation are unclear. We hypothesized that the main catalytic subunit for cardiac-MLCP is PP1cß, and maintenance of RLC phosphorylation in vivo is dependent on regulation by striated muscle-specific MYPT2. Here, we used PP1cß conditional knockout mice to biochemically define cardiac-MLCP proteins and developed a cardiac myofibrillar phosphatase assay to measure the direct contribution of MYPT-regulated and MYPT-independent phosphatase activities toward phosphorylated cardiac myosin. We report that (1) PP1cß is the main isoform expressed in the cardiac myocyte, (2) cardiac muscle pathogenesis in PP1cß knockout animals involve upregulation of total PP1cα in myocytes and non-muscle cells, (3) the stability of cardiac MYPT1 and MYPT2 proteins in vivo is not dependent on the PP1cß expression, and (4) phosphorylated myofibrillar cardiac myosin is dephosphorylated by both myosin-targeted and soluble MYPT-independent PP1cß activities. These results contribute to our understanding of the cardiac-MLCP in vivo.


Assuntos
Miosinas Cardíacas , Fosfatase de Miosina-de-Cadeia-Leve , Proteína Fosfatase 1 , Animais , Miosinas Cardíacas/metabolismo , Camundongos , Camundongos Knockout , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosfatos/metabolismo , Fosforilação , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo
18.
Commun Biol ; 5(1): 744, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879418

RESUMO

Erectile dysfunction (ED) is closely associated with smooth muscle dysfunction, but its underlying mechanisms remains incompletely understood. We here reported that the reduced expression of myosin phosphatase target subunit 1 (MYPT1), the main regulatory unit of myosin light chain phosphatase, was critical for the development of vasculogenic ED. Male MYPT1 knockout mice had reduced fertility and the penises displayed impaired erections as evidenced by reduced intracavernous pressure (ICP). The penile smooth muscles of the knockout mice displayed enhanced response to G-Protein Couple Receptor agonism and depolarization contractility and resistant relaxation. We further identified a natural compound lotusine that increased the MYPT1 expression by inhibiting SIAH1/2 E3 ligases-mediated protein degradation. This compound sufficiently restored the ICP and improved histological characters of the penile artery of Mypt1 haploinsufficiency mice. In diabetic ED mice (db/db), the decreased expression of MYPT1 was measured, and ICP was improved by lotusine treatment. We conclude that the reduction of MYPT1 is the major pathogenic factor of vasculogenic ED. The restoration of MYPT1 by lotusine improved the function of injured penile smooth muscles, and could be a novel strategy for ED therapy.


Assuntos
Disfunção Erétil , Animais , Disfunção Erétil/tratamento farmacológico , Disfunção Erétil/metabolismo , Masculino , Camundongos , Camundongos Knockout , Músculo Liso/fisiologia , Fosfatase de Miosina-de-Cadeia-Leve/genética , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosforilação , Fatores de Virulência/metabolismo
19.
Cells ; 11(10)2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35626740

RESUMO

Epigallocatechin-3-gallate (EGCG) has widespread effects on adipocyte development. However, the molecular mechanisms of EGCG are not fully understood. We investigate the adipogenic differentiation of human-derived mesenchymal stem cells, including lipid deposition and changes in the expression and phosphorylation of key transcription factors, myosin, protein phosphatase-2A (PP2A), and myosin phosphatase (MP). On day 6 of adipogenic differentiation, EGCG (1-20 µM) suppressed lipid droplet formation, which was counteracted by an EGCG-binding peptide for the 67 kDa laminin receptor (67LR), suggesting that EGCG acts via 67LR. EGCG decreased the phosphorylation of CCAAT-enhancer-binding protein beta via the activation of PP2A in a protein kinase A (PKA)-dependent manner, leading to the partial suppression of peroxisome proliferator-activated receptor gamma (PPARγ) and adiponectin expression. Differentiated cells exhibited a rounded shape, cortical actin filaments, and lipid accumulation. The EGCG treatment induced cell elongation, stress fiber formation, and less lipid accumulation. These effects were accompanied by the degradation of the MP target subunit-1 and increased the phosphorylation of the 20 kDa myosin light chain. Our results suggest that EGCG acts as an agonist of 67LR to inhibit adipogenesis via the activation of PP2A and suppression of MP. These events are coupled with the decreased phosphorylation and expression levels of adipogenic transcription factors and changes in cell shape, culminating in curtailed adipogenesis.


Assuntos
Células-Tronco Mesenquimais , Proteína Fosfatase 2 , Adipogenia , Humanos , Lipídeos/farmacologia , Células-Tronco Mesenquimais/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/farmacologia , Proteína Fosfatase 2/metabolismo , Receptores de Laminina/metabolismo , Proteínas Ribossômicas , Fatores de Transcrição
20.
J Smooth Muscle Res ; 58(0): 22-33, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418530

RESUMO

CPI-17 regulates the myosin phosphatase and mediates the agonist-induced contraction of smooth muscle. PKC and ROCK phosphorylate CPI-17 at Thr38 leading to a conformational change of the central inhibitory domain (PHIN domain). The N- and C-terminal tails of CPI-17 are predicted as unstructured loops and their sequences are conserved among mammals. Here we characterized CPI-17 N- and C-terminal unstructured tails using recombinant proteins that lack the potions. Recombinant CPI-17 proteins at a physiologic level (10 µM) were doped into beta-escin-permeabilized smooth muscle strips for Ca2+ sensitization force measurement. The ectopic full-length CPI-17 augmented the PDBu-induced Ca2+ sensitization force at pCa6.3, indicating myosin phosphatase inhibition. Deletion of N- and C-terminal tails of CPI-17 attenuated the extent of PDBu-induced Ca2+-sensitization force. The N-terminal deletion dampened phosphorylation at Thr38 by protein kinase C (PKC), and the C-terminal truncation lowered the affinity to the myosin phosphatase. Under the physiologic conditions, PKC and myosin phosphatase may recognize CPI-17 N-/C-terminal unstructured tails inducing Ca2+ sensitization force in smooth muscle cells.


Assuntos
Contração Muscular , Proteínas Musculares , Animais , Cálcio/metabolismo , Mamíferos/metabolismo , Contração Muscular/fisiologia , Proteínas Musculares/metabolismo , Músculo Liso/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Proteína Quinase C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...